Serhii Havrylov

Current location London, UK

Github github.com/serhii-havrylov E-mail sergii.gavrylov@gmail.com Linkedin linkedin.com/serhii-havrylov Website serhii-havrylov.github.io

Education

PhD student - Institute for Language, Cognition and Computation, University of Edinburgh

Mar 2016 - PhD candidate - Institute for Logic, Language, and Computation, University of Amsterdam Sep 2017

2012 - 2014 MSc in Applied Mathematics - National Technical University of Ukraine Diploma with honours

2008 – 2012 BSc in Applied Mathematics – National Technical University of Ukraine Diploma with honours

Work experience

May 2021 -Amazon UK

Applied Scientist

Researching, prototyping and implementing ML/NLP algorithms for improving Alexa Speech and Language technology.

Jun 2020 -Google

Research SWE intern **Sep 2020**

Prototyping a model for eliciting user preferences via polar question generation.

Iun 2018 -Facebook AI Research Research Intern (AI) Sep 2018

> During the internship, a novel model for learning latent tree parsers had been developed. The results are published at NAACL-HLT 2019.

Oct 2013 -Grammarly

Apr 2016 Research Engineer

> Researching, prototyping and implementing ML/NLP algorithms for improving the accuracy of Grammarly's language core.

May 2013 -Silver Cup

Oct 2013 Quantitative Analyst

Applying machine learning techniques for development and improvement trading strategies.

Publications

Liu, F., Jiao, Y., Massiah, J., Yilmaz, E., Havrylov, S. Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations. // preprint

Havrylov, S., Titov, I. Preventing Posterior Collapse with Levenshtein Variational Autoencoder. // preprint

Hu, Z., Havrylov, S., Titov, I., Cohen, S. Obfuscation for Privacy-preserving Syntactic Parsing. // IWPT 2020

Guo, S., Ren, Y., Havrylov, S., Frank, S., Titov, I., Smith, K. The Emergence of Compositional Languages for Numeric Concepts Through Iterated Learning in Neural Agents. // EmeCom NeurIPS 2019 Workshop

Havrylov, S., Kruszewski, G., Joulin, A. Cooperative Learning of Disjoint Syntax and Semantics. // NAACL-HLT 2019 (Oral presentation)

Bražinskas, A., Havrylov, S., Titov, I. Embedding Words as Distributions with a Bayesian Skip-gram Model. // Bayesian Deep Learning NIPS 2016 Workshop and COLING2018 (Oral presentation)

Havrylov, S., Titov, I. Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols. // ICLR2017 Workshop track and NIPS2017

Gavrylov S.V. Classifying motion capture sequences using recurrent neural networks // SAIT 2014: System analysis and information technologies, Kyiv, Ukraine

Gavrylov S.V., Drobyshev Y.P. Human motion recognition using recurrent neural networks with fast dropout regularization // IAI 2014: XIV International Conference "Intelligent analysis of information", Kyiv, Ukraine

Volunteering, teaching

Reviewer: NAACL-HLT 2019, Machine Learning for NLP area.

NeurIPS 2019 (a top 50% ranking reviewer).
ICML 2020 (a top 33% ranking reviewer).
EMNLP 2020 (Machine Learning for NLP area).

NeurIPS 2020.

Lviv Data Science Summer School 2018 and 2019: lectures on Discrete Computation Graphs

Natural Language Processing 1, University of Amsterdam, Teacher Assistant, Fall term 2016

Summer school "AACIMP-2015": Theano tutorial, lectures on convolutional neural networks and neural language models, project supervisor

Co-organizer and speaker at Kyiv deep learning study group

Projects

Unsupervised constituency parse tree learning for NLP [code, slides]

Quagga – CUDA/Python library that allows multi-GPU utilization by exploiting model parallelism for deep learning architectures [code, documentation]

Project reproduces the model from Show and Tell: A Neural Image Caption Generator [code]

Financial coding of school's budgets and expenditures (5^{th} /50, drivendata) [code, slides]

Applying recurrent neural networks with fast dropout regularization for modeling and classification of human motion (Master's thesis)

Classification of Psychiatric Problems Based on Saccades (2^{nd} award in IJCNN 2012 Competition: International Joint Conference on Neural Networks, Brisbane, Australia)

Development of dynamical visibility algorithm for time series analysis via complex networks, and its application for heart disease classification (Bachelor's thesis)

Completed Trainings and Online Courses

Probabilistic Graphical Models, Stanford University Machine Learning, Stanford University Networked life, University of Pennsylvania Learning from data, Caltech

Key Skills

Technical skills

Python with data science stack: NumPy, SciPy, Pandas, scikit-learn, PyTorch, TensorFlow, Keras. Julia, CUDA C/C++, Java, R, MatLab

Languages

English - full professional proficiency Ukrainian, Russian - native Italian - elementary level